R-estimation in Autoregression with Square-Integrable Score Function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Properties of the Integer Translates of a Square Integrable Function in L(R)

(1.1) 〈ψ〉 = span{ψ(· − k) ≡ ψk : k ∈ Z} That is, 〈ψ〉 is the L2(R) closure of the space generated by the finite linear combinations of the integer translates, (Tkψ)(x) ≡ ψ(x − k) ≡ ψk(x), of ψ ∈ L2(R). Such a space is often called the principal shift invariant space generated by ψ. In general, a closed subspace V ⊂ L2(R) is shift invariant if and only if TkV ⊂ V for all translates Tk, k ∈ Z. The...

متن کامل

Improved Subset Autoregression: With R Package

The FitAR R (R Development Core Team 2008) package that is available on the Comprehensive R Archive Network is described. This package provides a comprehensive approach to fitting autoregressive and subset autoregressive time series. For long time series with complicated autocorrelation behavior, such as the monthly sunspot numbers, subset autoregression may prove more feasible and/or parsimoni...

متن کامل

Two-wavelet constants for square integrable representations of G/H

In this paper we introduce two-wavelet constants for square integrable representations of homogeneous spaces. We establish the orthogonality relations fo...

متن کامل

Comment on " Quantile Autoregression " by R . Koenker

My remarks about this paper are organised within four points. The …rst of these notes the close connection between the authors’ random coe¢ cient model and some earlier models that were not formulated in terms of "random coe¢ cients". The second comments on the model’s identi…cation. The third point queries the transition from the authors’basic model (1) to their quantile version (2). Finally w...

متن کامل

Multi-Task Learning in Square Integrable Space

Several kernel based methods for multi-task learning have been proposed, which leverage relations among tasks as regularization to enhance the overall learning accuracies. These methods assume that the tasks share the same kernel, which could limit their applications because in practice different tasks may need different kernels. The main challenge of introducing multiple kernels into multiple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2002

ISSN: 0047-259X

DOI: 10.1006/jmva.2001.1998